华南理工大学医学院发育与再生医学团队揭示Runx1在中性粒细胞成熟过程中的调节机制
作者:luojiao 发布时间:2021/4/2 11:00:00
撰文 | 黄志斌
中性粒细胞作为血液中最丰富的吞噬细胞,是先天免疫系统中必不可少的第一道防线。成熟的中性粒细胞在杀灭和消化病原体、对损伤做出反应和介导炎症反应中发挥了重要作用,它们最早到达损伤和炎症部位,具有很强的趋化性和吞噬功能,在感染时趋化至感染部位,依赖丰富的颗粒酶、活性氧、中性粒细胞外诱捕网等杀灭外来物质[1]。中性粒细胞的定向分化、发育和成熟是一系列复杂而有序的动态过程,要经过严密的转录因子调控才能得以实现。其中任何一个环节发生错误,都将引起中性粒细胞的数量、分布和功能异常,从而引起各类血液疾病,如先天性中性粒细胞减少症(congenital neutropenia,CN)、白细胞黏附缺陷(leukocyte adhesion deficiency,LAD)、慢性肉芽肿(chronic granulomatous disease,CGD)、骨髓增生异常综合症(Myelodysplastic syndrome,MDS)和白血病等[2-5]。因此,了解中性粒细胞如何正常分化为功能成熟细胞及迁移到损伤或炎症部位并发挥正常吞噬杀伤功能将有助于开发治疗中性粒细胞相关疾病的新治疗策略。
图1 runx1突变影响中性粒细胞成熟
图2 c-myb和runx1协同调控中性粒细胞成熟
图3 c-Myb和Runx1通过相互结合共同促进中性粒细胞特异性基因转录
图4 斑马鱼中c-Myb和Runx1调控中性粒细胞发育的模式图
参考文献:
ootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J.,Verdine, V., Cox, D.B.T., Kellner, M.J., Regev, A., et al. (2017). RNA targetingwith CRISPR-Cas13. Nature 550, 280-284.
1. Kruger P, Saffarzadeh M, Weber ANR, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D: Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. Plos Pathog 2015, 11(3).
2. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A: Neutrophil function: from mechanisms to disease. Annual review of immunology 2012, 30:459-489.
3. Borregaard N: Neutrophils, from marrow to microbes.Immunity 2010, 33(5):657-670.
4. Galli SJ, Borregaard N, Wynn TA: Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nature immunology 2011,12(11):1035-1044.
5. Mantovani A, Cassatella MA, Costantini C, Jaillon S: Neutrophils in the activation and regulation of innate and adaptive immunity. Nature reviews Immunology 2011, 11(8):519-531.
6. Okuda T, Deursen JV, Hiebert SW, Grosveld G, Downing, R J: AML1, the Target of Multiple Chromosomal Translocations in Human Leukemia, Is Essential for Normal Fetal Liver Hematopoiesis. Cell 1996, 84(2):321.
7. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA: Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A 1996, 93(8):3444-3449.
8. Jin H, Li L, Xu J, Zhen F, Zhu L, Liu PP, Zhang M, Zhang W, Wen Z: Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression.Blood 2012, 119(22):5239-5249.
9. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T, Mitani K, Chiba S, Ogawa S, Kurokawa M: AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nature Medicine 2004, 10(3):299-304.
10. Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R, Curley DP, Kutok JL, Akashi K, Williams IR et al: Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 2005, 106(2):494-504.
11. Chi Y, Huang Z, Chen Q, Xiong X, Chen K, Xu J, Zhang Y, Zhang W: Loss of runx1 function results in B cell immunodeficiency but not T cell in adult zebrafish. Open biology 2018, 8(7).
12. Eaves CJ: Hematopoietic stem cells: concepts, definitions, and the new reality. Blood2015, 125(17):2605-2613.
13. Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T, Suzushima H, Takatsuki K, Kanno T, Shigesada K et al: Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999, 93(6):1817-1824.
14. De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Ferec C, De Braekeleer M: RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncol 2011,7(1):77-91.
15. Le GD, Redd MJ, Colucciguyon E, Murayama E, Kissa K, Briolat V, Mordelet E, Zapata A, Shinomiya H, Herbomel P: Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 2008, 111(1):132.
16. Jin H, Huang Z, Chi Y, Wu M, Zhou R, Zhao L, Xu J, Zhen F, Lan Y, Li L et al: c-Myb acts in parallel and cooperatively with Cebp1 to regulate neutrophil maturation in zebrafish. Blood2016, 128(3):415-426.
17. Herbomel P, Thisse B, Thisse C: Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 1999, 126(17):3735-3745.
18. Cuartero S, Weiss FD, Dharmalingam G, Guo Y, Ing-Simmons E, Masella S, Robles-Rebollo I, Xiao X, Wang YF, Barozzi I et al: Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat Immunol 2018, 19(9):932-941.
19. Borregaard N: Neutrophils, from Marrow to Microbes.Immunity 2010, 33(5):657-670.